

Uncertainty correlation methods and different long-term data

Frank Klintø, Wiebke Langreder Wind&Site Global Competence Centre

May 2013

- Motivation why is it worth detailed analysis?
- LT and Site data sources
- MCP methods
- Statistical methods
- Serious number crunching
- Uncertainty model
- Results

- Motivation why is it worth detailed analysis?
- LT and Site data sources
- MCP methods
- Statistical method
- Serious number crunching
- Uncertainty model
- Results

Quest for Quality LT data

Suzlon Energy Ltd.

- 1. Meteorological station
 - Vegetation
 - Building activity
 - Degrading instrumentation
 - ...
- 2. Synthetic data an alternative?
 - Temporal resolution
 - Spatial resolution

Re-analysis versus Meso-scale

KAMM, MM5, WRF, etc.

Re-analysis data:

Assimilation of historical observational Meso-scale data data using a single consistent assimilation (or "analysis") scheme

Suzion Energy Ltd.

Re-analysis versus Meso-scale

• Meso-scale models resolve smaller scales not present in the reanalysis

Our Sites and their statistics

- High Quality masts accepted if
 - Pearson-Yearly-Wind Speed between Reanalysis-Mesoscale and Site is high and comparable
 - Monthly Pearson values between site and LT dataset are all above 0.8 at all years

8.69

4.59

8.27

6.45

0.95

0.68

0.92

0.92

o siles accepted, 2 siles rejected										
Description		Measurement	Measurement	Wind Speed	Pearson yearly wind speed between datasets					
	Recovery Rate	height	Years	Mast						
	%	m	#	Yearly m/s	Mesoscale-Reanalysis	Site-Reanalysis	Site-Mesoscale			
Australia (Hilly)	92-100	50	8	9.45	0.96	0.94	0.94			
Europe Complex	93-100	39	8	5.94	0.96	0.94	0.94			

7

9

18

19

6 sites acconted 2 sites rejected

60

80

70

40

* All years with the exception of one >94%

95-100 64-99*

89-100

87-100

Brazil coastal

US catabatic

Europe Flat

Europe Nearly Offshore

0.94

0.69

0.78

0.93

0.94

0.71

0.84

0.81

- Motivation why is it worth detailed analysis?
- LT and Site data sources
- MCP methods
- Statistical method
- Serious number crunching
- Uncertainty model
- Results

MCP Methods

- 1. Linear regression
 - Creation of artificial time series based on mathematicial link V_{ST} and concurrent V_{LT}
 - On-site wind rose is modified towards the LT wind rose

- 2. Wind index (energy index)
 - Converting wind speed into energy through application of a simplified power curve and comparing E_{LT} with E_{ST}
- More details: see WindPRO handbook

- Motivation why is it worth detailed analysis?
- LT and Site data sources
- MCP methods
- Statistical method
- Serious number crunching
- Uncertainty model
- Results

Back to our study

- High quality long-term onsite data
- Perform LT corrections with :
 - re-analysis (hourly)
 - meso-scale (hourly, 3km resolution)
- Use 2 different MCP methods (WindPRO default settings)
 - Linear Regression
 - Energy Index
- Use uncorrected site data- as benchmark
 - Site method

X-1 subsets $6^{*}(X-1)$ results per site ($V_{LT} E_{LT}$) for (Linear,Index,Site) \rightarrow Bias, St. deviation of V_{LT} and E_{LT}

 \rightarrow E_{LT} best at modelling uncertainty

Why Energy Density

- Using all sector energy density
 - Turned out more easy to model E_{LT} than V_{LT} uncertainties
 - More sensitive to high energy density sectors as ~ frequency * V³

- Motivation why is it worth detailed analysis?
- LT and Site data sources
- MCP methods
- Statistical method
- Serious number crunching
- Uncertainty model
- Results

Why did it get so complicated?

- We have a bias (=offset) and a standard deviation (=uncertainty)
- Not able to predict and correct bias
- A method can have a very low standard deviation but a high bias or the other way round which one is better?
- How to combine bias and standard deviation?
 - P90/P10 based on bias plus standard deviation (Site)
 - Absolute value of bias plus standard deviation (Model)

Site: Linear Method

Site: Linear, Index, Site

Site Info Pearson Monthly 0.88-0.95 Pearson Hourly 0.52-0.58 Variability 3.3%-3.9%

Linear regr: Biased not reducing error at this site Index: Not Biased close to Site result Site : Fast gain using several concurrent years

Site: Observations

- Index method best at 4 sites
- Site method best at 1 site
- Linear regression method best at 1 site with Pearson_Hourly >0.8
- Linear regression has high bias problems at Pearson_Hourly < 0.6

Model: Pearson-Linear Regression

Model: Speed Index-Index Method

Model, Variability-Index method

- Motivation why is it worth detailed analysis?
- LT and Site data sources
- MCP methods
- Statistical method
- Serious number crunching
- Uncertainty model
- Results

Tying everything together

- Four drivers influence the error
 - Hourly Pearson R (the strongest driver)
 - Wind Speed Index
 - Number of concurrent years
 - Variability (the weakest one)
- Proposed scheme for combining them:

Model							
1	A*ABS(100%-Index Year)						
2	B*(Pearson-Hourly) ^C						
3	D(Variability%)						
4	(Concurrent Years) ^E						
Uncertainty	Combined = $sqrt(1^2+2^2+3^2)*4$						

Model parameters and results

- Index Method usual competitive
- Site Method competitive at low Wind Speed Index and/or several concurrent years
- Linear Correlation competitive at high Hourly-Pearson

Madal	Daramator	Method			
Widdei	Parameter	Linear	Index	Site	
A*ABS(100%-Index Year)	А	1.55	1.55	3.7	
P*(Pearson Hourb) ^C	В	0.06	0.05/0.07		
B (Pearson-Houriy)	С	-1.3	-0.9		
D(Variability%)	D	0.2	0.2	2	
(Concurrent Years) ^E	E	-0.3	-0.3	-0.5	
Combined = $sqrt(1^2+2^2+3^2)*4$					
Pearson-Hourly > 0.3	Reanalysis	s Data	Mesoscale Data		

Model Example Re-analyse Linear

Conversion: Energy Density-Production

- $E = \rho^*$ no of hours * v³ is compared with production per bin
- For each Weibull set one conversion factor

- Motivation why is it worth detailed analysis?
- LT and Site data sources
- MCP methods
- Statistical method
- Serious number crunching
- Uncertainty Model
- Results

Suzion Energy Ltd.

Results

- LT correction does not always add value
- Energy Density seems to be a better indicator than wind speed
- Four main drivers identified for error
 - Hourly Pearson seems to be the decisive factor to decide method and type of data
 - Length of data set
 - Wind Speed Index
 - Variability is the weakest driver

Results (2)

- Proposed scheme to combine all four error sources and recommend correlation method
- Method developed to convert energy density to production
- All findings have been implemented in an automized Production uncertainty estimator
- Uncertainties above 10% on Production Estimates possible 😕.
- Linear correlation method is often biased at low Pearson values

