HOW TO GUIDE

The REGION module and multiple sites in energyPRO

© Copyright and publisher:

EMD International A/S Niels Jernes vej 10 9220 Aalborg Ø Denmark Phone: +45 9635 44444 e-mail: emd@emd.dk web: www.emd.dk

About energyPRO

energyPRO is a Windows-based modeling software package for combined techno-economic analysis and optimisation of complex energy projects with a combined supply of electricity and thermal energy from multiple different energy producing units.

The unique programming in energyPRO optimises the operations of the plant including energy storage (heat, fuel, cold and electrical storages) against technical and financial parameters to provide a detailed specification for the provision of the defined energy demands, including heating, cooling and electricity use.

energyPRO also provides the user with a detailed financial plan in a standard format approved by international banks and funding institutions. The software enables the user to calculate and produce a report of the emissions by the proposed project.

energyPRO is very user-friendly and is the most advanced and flexible software package for making a combined technical and economic analysis of multi-dimensional energy projects.

For further information concerning the applications of energyPRO please visit www.emd.dk.

Terms of application

EMD has made every attempt to ensure the accuracy and reliability of the information provided in this Guide. However, the information is provided "as is" without warranty of any kind. EMD does not accept any responsibility or liability for the accuracy, content, completeness, legality, or reliability of the information contained in this guide.

No warranties, promises and/or representations of any kind, expressed or implied, are given as to the nature, standard, accuracy or otherwise of the information provided in this guide nor to the suitability or otherwise of the information to your particular circumstances. In no event shall EMD be liable for any loss or damage of whatever nature (direct, indirect, consequential, or other) whether arising in contract, tort or otherwise, which may arise as a result of your use of (or inability to use) this guide, or from your use of (or failure to use) the information in this guide.

EMD International A/S, August 2016

Contents

In this How To Guide you will learn about the REGION module and multiple sites in energyPRO. A step-by-step guide will lead you through how to add a site to an existing energyPRO project.

Click the bullets below to jump to the relevant chapter.

•	Introduction	6
•	Step-by-step guide	6
	Add a new site to an existing project	7
	Add a heat demand and a boiler to the site	9
	Add a transmission line between two sites	
•	Simulation results	15

Introduction

With the REGION module it is possible to model, analyse and optimise the operation of multiple sites in an energyPRO project. A site in energyPRO is a location that contains demands, energy units and/or storages, from which energy is exchanged to other sites via transmission lines. The possibility of having multiple sites in energyPRO is useful for instance when analyzing the economic and technical consequences of connecting two district heating grids or adding a solar collector field located at a distance from the district heating grid.

The REGION module can be use in a wide range of projects, but it is typically used when the modelled system consists of production units, which are physically located far from each other or far from where the heat is delivered. It is, however, also possible to use sites as a way to model a system's flow constraints and other limitations that are not otherwise possible to model.

Figure 1 shows an example of an energyPRO model with multiple sites.

Figure 1. Example of a site overview with three different sites and two transmission lines

In order to set up multiple sites in energyPRO, you must have access to the REGION module. You can check what modules that are included in your license in "About" under "Help" in the main menu.

If you do not have a license to the REGION module, this can be purchased by contacting the sales department at EMD International: sales@emd.dk

Step-by-step guide

There are, as mentioned, many useful applications with the possibility of having multiple sites in energyPRO. As an example of how sites can be used, this stepby-step guide will go through how to add another district heating system to an existing energyPRO project. In the example, it is assumed that a smaller village is located at a distance from the existing district heating grid and a connecting transmission line is desired.

Add a new site to an existing project

We start the example by opening the existing energyPRO project: "*Cogeneration plant on a spot market_DESIGN module*". Select 'File' in the upper left corner of energyPRO, click 'Open' and find the aforementioned file, which is typically located in <u>C:\energyPRO Data\English\Project examples</u>, as shown in Figure 2.

Open							×
$\leftarrow \rightarrow$ \land This PC \rightarrow OS (C:) \rightarrow energy	/PRO Data	> English > Project examples	5 v	Search Project	examples	,	2
Organize 🔻 New folder							?
	^	Name	Date modified	Туре	Size		^
A Quick access		Trigeneration plant on fixed tariffs_DESIGN module	28-04-2016 10:19	EPP File	344	4 KB	
Desktop	*	Trigeneration plant on flat rate_DESIGN module	28-04-2016 10:18	EPP File	337	/ KB	
Downloads	*	Trigeneration plant on a spot market_DESIGN module	28-04-2016 10:05	EPP File	553	3 KB	
Danske eksempler	*	Example of a fuel producing unit (electrolysis)_DESIGN module	28-04-2016 10:02	EPP File	39	€ KB	
Project examples	*	Example of a 500 kW photovoltaic_DESIGN module	28-04-2016 10:01	EPP File	463	3 KB	
🗎 Documents	*	Example of a 2 MW wind turbine_DESIGN module	28-04-2016 10:00	EPP File	251	I KB	
* Dropbox	*	Example of 1000 m2 solar collectors_DESIGN module	28-04-2016 09:52	EPP File	477	7 KB	
Dictures		Danish cogeneration plant with more sites_REGION module	28-04-2016 09:44	EPP File	1.221	KB	
	~	Cogeneration plant on fixed tariffs_FINANCE module	28-04-2016 09:32	EPP File	537	7 KB	
ttp DONG		Cogeneration plant on fixed tariffs_ACCOUNTS module	28-04-2016 09:29	EPP File	540) KB	
New Gernan CHP law, included in operation str	ategy	Cogeneration plant on fixed tariffs in private wire_DESIGN module	28-04-2016 09:23	EPP File	318	3 KB	
prog		Cogeneration plant on a spot market_DESIGN module	28-04-2016 09:20	EPP File	740) KB	
SC energyTRADE TVIS		Ocogeneration plant in island operation with electricity, heat and fuel storage in one month_OPERA	28-04-2016 09:19	EPP File	744	4 KB	
		🔿 Trigeneration plant on fixed tariffs_DESIGN module operation test - Copy	15-01-2016 10:24	EPP File	317	7 KB	
A DIODBOX	~	Trigeneration plant on fixed tariffs_DESIGN module operation test	15-01-2016 10:24	EPP File	317	7 KB	~
File name: Cogeneration plant on a spot market_DESIGN module					oject files	~	
				Open	Cane	cel]

Figure 2. Open the file "Cogeneration plan on a spot market_DESIGN module.epp"

You should now have an energyPRO window similar to the one shown on Figure 3 with two CHP's participating on the spot market.

Figure 3. An energyPRO model of two CHP's participating on the spot market

Add a new site by right clicking on 'Sites' and select 'Add new site' as shown on Figure 4.

Figure 4. Add a new site

You should now see another site 'New Site'. Rename this site by right clicking on it in the sites folder and select rename. Since we want to add a small village in this site, name the site 'Small Village'. To view the two sites, click 'Sites' and two sites should appear instead of one.

To begin with, the new site will contain the fuels and markets used in existing sites, as seen on Figure 5.

Figure 5. The new site has been added and renamed

Add a heat demand and a boiler to the site

Once the new site is added, it is time to add an energy conversion unit to the new site – in this case a natural gas fired boiler. Add the boiler by right clicking anywhere on the graphical window and click 'Add' followed by 'Energy Conversion Unit' and 'Boiler' as shown on Figure 6.

You can also access this menu by clicking the blue cross in the toolbar.

energyPRO 4.4 - Cogeneration plant on a spot mark	et_DESIGN module (Modified	1)		
<u>File</u> energyPRO setup <u>Project</u> setup <u>Tools</u> <u>W</u> indow	<u>H</u> elp			
Input data	🛛 🕞 🖌 ▼ Zoom: 100% 🖉	A + X - S	Site Overview Operation	strategy
Project identification External conditions External conditions GrSR2_Temperature_52_85N_1_23W_20 Electricity prices_EFEX 2015_EUR Return temperature Transmissions Detrict heating grid Sites Netural gas Detrict heating grid Transmissions Trues and S Detrict all a of heat Netural gas Detrict all of heat Netural gas Boilers Gas engine 1 Gas engine 2 Boilers Sites	11 Kithotens Natural gas	Layout Add Copy as Bitmap Connection Mode	Fuel Energy Conversion Unit Store Demand Add electricity market	Boiler CHP Elec. Boiler User Defined Unit
Reports Production, graphic Production, carpets Energy conversion, annual Energy conversion, monthly Duration curve for heat demand Environment Cash Flow, monthly Operation Income Financial Key Figures Catalogue of Technical Assumptions Catalogue of Economic Assumptions Operation Strategy Calculation Graphical Layout Project Reports				Absorption Chiller Electrical Chiller Elec. Heat Pump Flat Plate Solar Collector Evacuated Tube Solar Collector Photovoltaic Wind Farm Heat Rejection Load Energy Conversion Unit

Figure 6. Add a boiler to the site.

Once the boiler has been added, a window as the one shown in Figure 7 will appear. In this window, the boiler's specifications must be entered.

🔇 Boiler			_	_	_ 🗆 🔀
Name: E	Boiler		Connected to Site:	Small Village	\sim
Production unit ty	/pe Boiler	\sim	Non availability periods		
Fuel	(no fuel)	\sim			
Powerunit		kw 🖂			
An operation per A non operation	iod shall minimi period shall mir	um be (): 1. be (H()			
Power curves					
Operation I	Fuel	Heat			
Performance	kW	kW			
Linear	0,0	0,0			
Add line D	elete line	Enable formula: her unit	s in power curve		
Comments:					
1 0 🗠				ОК	Cancel

Figure 7. Type in the boiler's specifications

In this window, name the boiler: "Small Village Boiler", select 'Natural gas' as fuel and select 'MW' as the power unit. Next, type in 3 MW Fuel and 2.7 MW Heat in the Power curves and click 'OK' to finish the setup of the boiler.

Next, add a heat demand in the new site. This is done in the same way as when adding a boiler: Right click and select 'Add', then 'Demand' and then 'Heating Demand'. The following window should appear.

🔇 New Heat demand				_ 🗆 🔀
Name: New Heat demand	Heat demand	Connected to S	iite: Small Village	\sim
Development of Demand in Planning Perio	d			
Demand in Specified year				
Demand in Specified year				
Demand: () Fixed Calcul	ated 01-16 🗸 12-	16 🔛	0,0 MWh 🗸	
Demand depends on external condit	ions			
Fixed profile of demand	Monthly amount	ts		
	Month	[MWh] ^		
	January	0,0		
	February	0,0 **		
	March	0,0		
	April	0,0	-	
	lune	0,0	M	
		0,0 V	As timeseries	
Weekly basis	Developing over the	e years		
Date basis			8	
Restricted period of connection				
Comments:				4
			OK	Cancel
				Cuncer

Figure 8. In this window you can define the heat demand.

Set the annual heat demand to 6,000 MWh and put a check in the box, 'Demand depends on external conditions'. You should now see a window similar to the one in Figure 9

🔇 New Heat demand			_	_ 🗆 🔀
Name: New Heat demand	Heat demand	Connected to Site:	Small Village	\sim
Development of Demand in Planning Peri	iod			
Demand in Specified year				
Demand: (i) Fixed (i) Calco	ulated 01-16 💟 12-16	600	0,0 MWh 🔽	
Demand depends on external cond	litions			
Restricted season for dependent	demand (dd-mm)	01-01 🗸	- 01-01	
Depends linear on ambient tem	peratures			
Is user defined	°C Symbol for an	nhiont tomporaturos	T1	
MW/Degree Degree	Symbol for an	MW		
0,0726 * Max(17,0-T1(_);0)		+ 0,1708	<u>f</u> w	
Eined anofile of demand				
- Fixed profile of demand				
		<u>k</u>	× 🛤	
			As timeseries	
Move demands on	Developing over the y	ears		
Weekly basis Date basis			8	
Restricted period of connection				
Comments:				
È 🛛 🗠			ОК	Cancel

Figure 9. This wizard helps you to define a heat demand that depend on external conditions

Type in 75 % as the `Dependent fraction' and make sure to select the `T1' time series as the ambient temperatures under `Formula for dependency'.

Hit the icon, \bowtie to see a graph of the heat demand. Click 'OK' to finish the setup of the new heat demand.

Your new site should now look like the one in Figure 10.

Figure 10. Schematic of the units in site, "Small Village"

Add a transmission line between two sites

With the new site completed, it is time to connect the two sites by adding a transmission line. This is done by right clicking the 'Transmissions' folder and selecting 'Add new heat transmission' as shown in Figure 11.

Figure 11. Add a heat transmission line

When the transmission line has been added, open the transmission line by right clicking the new transmission in the 'Transmissions'-folder. A window similar to the one shown on Figure 12 should appear.

💭 Transmission 📃 🗖 🔀							
Name: Transmission							
Type of Transmission	n	Non availability periods					
Energy Type: Heat							
Site A: District	heating grid 🔛						
Site B: Small V	Village 🖂						
Site A can transm	nit to B						
✓ Site B can transm	hit to A						
Capacity and Loss							
Capacity [Cap]:	0,00	MW 💌 f ee 🕼					
Loss:	0,00	kw 💌 🎜					
È 🛛 💆		OK Cancel					

Figure 12. Set the capacity to 5 MW

To make sure that there will be sufficient transmission capacity, set the capacity to 5 MW.

Adjust the operation strategy

The last thing to do is to check that the operation strategy is set up correctly with the new site. Click on the 'Operation strategy' button in the top right of the energyPRO window. A window similar to the one shown on Figure 13 will appear.

Figure 13. Here you can adjust the operation strategy

The figure shows the net heat production costs (NHPC) of each unit as a function of the electricity spot price. The 'Small Village Boiler' is slightly more expensive than the boilers in the existing district heating network.

Click the 'Energy Unit Setup' to setup rules for the operation of the units and allow the 'Small Village Boiler' to run at partial load.

今 Operation strategy		_	_	_	- 0 2
Operation Strategy Minimizing Net Production User Defined Operation St	n Cost (NPC) trategy				
Net Heat Production Cost Energ	y Unit Setup				
Energy unit (or elec. demand)	Production to store allowed	Transmit to other sites allowed	Partial load allowed	Electricity market	Selected priority in operation strategy
Gas engine 1	~	~		Spot	Calculated
Gas engine 2	~	~		Spot	Calculated
Boilers			~		Calculated
Small Village Boiler		~	~		Calculated
Comments:					<u>^</u>
					OK Cancel

Figure 14. Here you can set rules for the units, affecting the operation strategy.

Allow the 'Small Village Boiler' to run at partial load and prevent the 'Boilers' in the existing network to transmit heat to other sites. Make sure to have the same setup as in the above figure before clicking 'OK' to finish the setup.

Simulation results

To view the results of the simulation, select one of the reports in the bottom left window. To view a graphical presentation of the production, click 'Production, graphic' as shown on Figure 15.

Figure 15. Click Production, graphic

To demonstrate how the two sites are operated, one week's operation from 31/10/2016 to 06/11/2016 is shown in Figure 16 and Figure 17. In both figures, four graphs are shown; the electricity spot price, the heat production and demand and finally the storage content and capacity.

In Figure 16 the operation of the units in the existing site, "District heating grid", is shown. The figure includes three graphs; the electricity spot price, the heat production/demand and finally the storage content and capacity.

From the figure it can be seen that the two gas engines are operated in hours with high electricity prices. In these hours, the engines cover the heat demand in both sites and the additional heat is stored in the thermal storage tank. When electricity prices are low, the stored heat is used to cover the demand until the tank is empty, then the two gas boilers are started to cover the heat demand in each site.

Figure 16. Graphical presentation of the operation of the existing site: "District heating grid". From above: The electricity spot price, the heat production and the storage content

The different colors in the heat production graph represent the different units: Yellow = Boilers, Red/Green = Gas engines, Red line = heat demand in this site and Blue line = heat sent to "Small Village".

In Figure 17 the operation of the boiler in the new site, "Small Village", is shown. The figure includes two graphs; the electricity spot price and the heat production/demand.

The blue color represents the boiler in the small village and the green color represents the heat received from the site: "District heating grid".

Figure 17. Graphical presentation of the operation of the new site: "Small Village". From above: The electricity spot price and the heat production

The figure shows that the most of the heat is covered by the gas engines in the existing site, "District heating grid".

When Figure 17 and Figure 16 are compared, it is seen that the "Small Village boiler" is only operated in hours with low electricity prices and when the storage tank in the existing site "District heating grid" is low.

Please notice, that you can find more information on how to use energyPRO in the How to Guides, User's Guide and tutorials on EMD's website:

http://www.emd.dk/energypro/

Niels Jernes vej 10 • 9220 Aalborg Ø • Denmark tel.: +45 9635 4444 • e-mail: emd@emd.dk • www.emd.dk