- Reference Wind Data -Challenges when doing short measurement campaigns in complex terrain

Morten Lybech Thøgersen (mlt@emd.dk), Lasse Svenningsen (Is@emd.dk) & Thorkild G. Sørensen (tgs@emd.dk) EMD International A/S

Vindkraftnet - 2019-05-13 @ EMD International, Aalborg

EMD International A/S

Contents

- 1. Introduction to ERA5 and comparing to other reanalysis data
- 2. Correlations, trends and consistency
- 3. Short campaigns a real challenge!
- 4. Summary

Contents

- 1. Introduction to ERA5 and comparing to other reanalysis data
- 2. Correlations, trends and consistency
- 3. Short campaigns a real challenge
- 4. Summary

1. Introduction- Overview – ERA5

- ERA5 is ECMWF most recent reanalysis dataset (5th generation)
- Higher temporal and spatial resolution that ERA-Interim
- New parameters available such as 100m winds

Released schedule

- 7 years was released as first segment (2010-2016)
- Continious updating (December 2017)
- Full coverage 2017 (February 2018)
- 2 extra years (2008-2009) released primo 2018
- 1979-2007 released early 2019

Still under development

Item	'Old' plan	'New' plan	Even newer plan
ERA5T (short delay product)	2017-Q4	Mid 2018	Mid 2019
Access to observations from 2010	2017-Q4	Mid 2018	Mid 2019
Years 1979-2007 released	2018-Q2	Late 2018	2019-Q1
Years 1950-1978 released	2019-Q1	2019	Late 2019

Public release plan @ http://climate.copernicus.eu/products/climate-reanalysis

1. Introduction – Comparison

Parameter \ Dataset	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2	
Vertical levels	137	60	72	64	
Horizontal resolution	~31 km	~31 km ~80 km ~50 km		~38km/~25km	
Upper modelling level	0.01hPa	0.1hPa	0.01hPa	0.26 hPa	
	(~80 km)	(~60 km)	(~80 km)	(~55 km)	
Temporal resolution	1-hourly	6-hourly	1-hourly	1-hourly	
Release schedule	Monthly*	Monthly	Monthly	Daily	
Assimilation model	IFS Cycle 41r2	IFS Cycle 31r2	GEOS 5.12.4	Grid-Point Statistical	
				Interpolation, GSI	
Spatial grid type	Reduced Gaussian	Reduced Gaussian	Cubed sphere	Varies	
Period available	2010-2016	1979-present	1980-present	CFSR: 1979-2010	
(now)				CFSv2: 2011-present	
Period available	1950-present	1979-present	1980-present	CFSR: 1979-2010	
(at completion)				CFSv2: 2011-present	
Delay in data delivery	3 months *)	3 months	1-2 months	1 day	

*) A preliminary version 'ERA5T' with 1 week delay will be available

1. Introduction – Comparison

ITEM	MERRA2	MERRA
GEOS data assimilation model version	5.12.4	5.2.0
Observations per 6 hourly analysis cycle	~ 5 · 10 ⁶	$\sim 2 \cdot 10^6$
Grid	Cubed sphere grid	Regular lat-lon
Spatial resolution (longitude)	0.625 degrees	2/3 degree
Spatial resolution (latitude)	0.5 degrees	0.5 degree
Period covered (yyyy.mm)	1980.01 - present	1979.01 – 2016.02
Best temporal resolution	1 hour	1 hour

Credits: Grid figures - P.A. Ullrich - http://amg.ucdavis.edu/research.html

1. Introduction

OBSERVATIONS ERA-5 RAW DATA DOWNSCALING **EMD-WRF OD** EMD-WRF MESOSCALE MODELLING DATA ASSIMILATION / REANALYSIS Data Input: - ERA5 Boundary Data EMD-MESO/MICRO DOWNSCALE MODELLING - Globcover Terrain Data Input: Model Execution: - Mesoscale time series and terrain - Standard EMD-WRF setup - Detailed, high-resolution microscale terrain - Spatial resolution ~ 3 km Model Execution: MERRA2 - WAsP version 11+ - windPRO version 3.1+ DATA: IN-SITU AND REMOTE OBSERVATIONS DATA: GLOBAL / SYNOPTIC SCALE: Reanalysis Data: ECMWF ERA5 Spatial Resolution: ~35km DATA: MESOSCALE: Typical model scales: ~100 km's Time series, wind speed and direction Time-series data, 1 hourly resolution Spatial Resolution: ~3 km DATA: MICROSCALE: Temporal resolution: 1 hour Time series & statistical data, wind speed and direction Typical model scales: ~10 km's Spatial Resolution: ~250m Temporal resolution: 1 hour

Typical model scales: ~10 m's

METEO/ONLINE-DATA

METEO/ONLINE-DATA

MESOSCALE-CALCULATION

SCALER

1. Introduction - Observations?

Credit:

Observations assimilated in the MERRA2 datasets for the period 01.1980 until 12.2014. Units are millions per 6 hours. From Bosilovich et al: 'MERRA-2: Initial Evaluation of the Climate - Technical Report Serieson Global Modeling and Data Assimilation – Volume 43'

Contents

- 1. Introduction to ERA5 and comparing to other reanalysis data
- 2. Correlations, trends and consistency
- 3. Short campaigns a real challenge!
- 4. Summary

2. Correlations, Trends, Consistency

	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
≥	Mean Value		0.65	0.54	0.54	0.47
our	Standard Deviatio	n	0.14	0.17	0.15	0.16
Ť	Minimum		0.20	0.10	0.17	0.08
	Maximum		0.88	0.81	0.84	0.80
	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
	Mean Value		0.83	0.72	0.74	0.72
Jail	Standard Deviatio	n	0.11	0.18	0.15	0.14
	Minimum		0.35	0.17	0.27	0.18
	Maximum		0.96	0.93	0.96	0.93
	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
l _c	Mean Value		0.86	0.78	0.76	0.74
DT	Standard Deviatio	n	0.12	0.22	0.21	0.20
ĬΣ	Minimum		0.34	0.03	0.10	0.11
	Maximum		0.99	0.98	0.99	0.97

Figure 5: Wind Speed Correlation (R²) at hourly, daily and montly averaging times. Data from 107 masts. Notes: ERA-I is interpolated to hourly values. CFSR/CFSv2 is from EMD CFSR-E dataset (0.5 deg). Green color-boldface color shows best dataset for the metric being considered.

EMD International A/S

www.emd.dk

R² correlation – Global (raw) data vs. 107 masts (wind speed)

2. Correlations, Trends, Consistency

Figure 6: Improvement in correlation, ⊿R, ERA5 and MERRA2 vs local masts.

EMD International A/S

www.emd.dk

R correlation – Global (raw) data vs. 107 masts (wind speed)

2. Correlations, Trends, Consistency R² – Correlation –windspeed at 107 masts

EMD International A/S

www.emd.dk

	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
٨	Mean Value		0.67	0.64	0.61	0.61
our	Standard Deviati	on	0.12	0.12	0.13	0.12
Ĭ	Minimum		0.34	0.32	0.33	0.32
	Maximum		0.88	0.84	0.83	0.83
	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
>	Mean Value		0.86	0.83	0.81	0.81
Jail	Standard Deviati	on	0.08	0.09	0.10	0.09
	Minimum		0.51	0.49	0.45	0.45
	Maximum		0.96	0.95	0.95	0.95
	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
hlγ	Mean Value		0.89	0.87	0.86	0.84
ontl	Standard Deviati	on	0.12	0.13	0.14	0.14
M	Minimum		0.25	0.27	0.24	0.28
	Maximum		0.99	0.99	0.99	0.99

R² correlation – EMD-WRF OD data vs. 107 masts (wind speed)

2. Correlations, Trends, Consistency Daily R² – Correlation – 107 masts

EMD International A/S

www.emd.dk

R² correlation – EMD-WRF OD data vs. 107 masts (wind speed)

2. Correlations, Trends, Consistency Daily R² – Correlation – 107 masts

R² correlation – EMD-WRF OD data vs. 107 masts (wind speed)

EMD International A/S

Correlations, Trends, Consistency Daily R² – Correlation – 107 masts

EMD International A/S www.emd.dk

R² correlation – EMD-WRF OD data vs. 107 masts (wind speed)

2. Correlations, Trends, Consistency **Regional Differences**

Legend for our box and whiskers plot:

Green triangle = Sample Mean Green line = Median Box boundaries = 25% and 75% percentiles Outer limits

= Sample minimum and maximum

2. Main conclusions!

- ERA5 as input to WRF or on its own- is a significant improvement - over previous reanalysis datasets
- The standard deviation / spread is smaller - so the probability of larger errors is smaller when using ERA5
- Largest improvement found on moderate correlation sites - on sites where moderate correlation is found with previous modelling; these seem to benefit the most from the improved ERA5 dataset
- ERA-Interim is still the preferred choice for long-term correlation - until a longer period of ERA5 data become available (expected Q4-2018)
- ERA-5 is now the preferred choice for long-term correlation - but comparisons to ERA-Interim and MERRA2 should still be done until confidence in 'older' data periods have been established.
 - through WRF or on its own (raw data)

Contents

- 1. Introduction to ERA5 and comparing to other reanalysis data
- 2. Correlations, trends and consistency
- 3. Short campaigns a real challenge!
- 4. Summary

Image credit: DTU Vindenergi/Recast Project.

RECAST: Reduced Assessment Time www.recastproject.dk

ERRORS OF LONG-TERM ADJUSTMENT OF SHORT MEASUREMENTS

RAMBOLL

WINDEUROPE 2018 s

Image credit: Anselm Grötzner, Cube-Ramboll, WindEurope-2018

Long-term adjustments leads to different results, depending on:

- Season(s) included
- Period analysed / length
- Reanalysis datasets used
- Mesoscale dataset/vendor used
- MCP-method used

(is seasonality included in equations?)

 Model ability to predict seasonality with confidence (without seasonal bias)

Site in UK – Existing MCP's any good for this use-case?

Local data:

- 1 long term masts 5 years
- 6 short term masts months

Reference data:

- Local mast
- EMD-WRF OD ERA5
- Merra 2 (raw)

Methods

- Temporal extrapolation with 4 MCP-methods

1.3

- Horizontal extrapolation with 2 methods (WAsP + WAsP-CFD)

9

Mast-50m

8

10

11

12

Site in UK – Existing MCP's any good?:

Local data:

- 1 long term masts 5 years
- 6 short term masts months

Reference data:

- Local mast
- EMD-WRF OD ERA5
- Merra 2 (raw)

Methods

- Temporal extrapolation with 4 MCP-methods
- Horizontal extrapolation with 2 methods (WAsP + WAsP-CFD)

Reference Series: M49 - Local 50m – 5yrs of data

				LTC - Modelled				Calculate	d with M49	Delta (M	CP-WAsP)	
Mast	From	То	Regression	Matrix	Neural	Scaling	Mean	StdDev	WAsP	WAsP-CFD	WAsP	WAsP-CFD
M49	2001.09.18	2006.09.18	8.33	8.33	8.33	8.33	8.33	0.00	8.26	8.25	-	-
M50	2001.10.10	2001.12.05	7.51	7.47	7.53	7.54	7.51	0.03	7.61	7.59	-1.3%	-1.0%
M51	2001.10.10	2001.11.24	7.82	7.77	7.83	7.78	7.80	0.03	7.78	7.67	0.2%	1.7%
M52	2001.12.07	2002.02.09	7.87	7.75	7.83	7.83	7.82	0.04	7.70	7.66	1.6%	2.1%
M53	2001.12.07	2002.02.10	8.05	8.02	8.06	8.03	8.04	0.02	7.99	7.95	0.6%	1.1%
M54	2002.02.10	2002.03.26	7.73	7.65	7.68	7.56	7.65	0.06	7.74	7.71	-1.1%	-0.8%
M55	2002.02.12	2002.03.26	8.03	7.97	7.97	8.05	8.00	0.04	7.86	7.85	1.8%	2.0%
										Minimum	-1.3%	-1.0%
										Maximum	1.8%	2.1%

Site in UK – Existing MCP's any good?:

Local data:

- 1 long term masts 5 years
- 6 short term masts months
- Reference data:
- Local mast

- EMD-WRF OD ERA5

- Merra 2 (raw)

Methods

- Temporal extrapolation with 4 MCP-methods
- Horizontal extrapolation with 2 methods (WAsP + WAsP-CFD)

				LTC - Modelled					Calculated with M49		Delta (MCP-WAsP)	
Mast	From	То	Regression	Matrix	Neural	Scaling	Mean	StdDev	WAsP	WAsP-CFD	WAsP	WAsP-CFD
M49	2001.09.18	2006.09.18	8.42	8.42	8.36	8.43	8.41	0.03	8.26	8.25	1.8%	1.9%
M50	2001.10.10	2001.12.05	7.46	7.53	7.42	7.57	7.50	0.06	7.61	7.59	-1.5%	-1.2%
M51	2001.10.10	2001.11.24	7.72	7.69	7.71	7.75	7.72	0.02	7.78	7.67	-0.8%	0.6%
M52	2001.12.07	2002.02.09	8.00	7.76	8.00	7.97	7.93	0.10	7.70	7.66	3.0%	3.5%
M53	2001.12.07	2002.02.10	8.16	7.97	7.98	8.16	8.06	0.09	7.99	7.95	0.9%	1.4%
M54	2002.02.10	2002.03.26	7.47	7.55	7.59	7.82	7.61	0.13	7.74	7.71	-1.7%	-1.4%
M55	2002.02.12	2002.03.26	8.20	7.97	8.12	8.38	8.17	0.15	7.86	7.85	3.9%	4.1%
										Minimum	-1.7%	-1.4%
										Maximum	3.9%	4.1%
										Maximum	3.9%	4.1%

Reference Series: EMD-WRF OD – ERA5

Site in UK – Existing MCP's any good?:

Local data:

- 1 long term masts 5 years
- 6 short term masts months

Reference data:

- Local mast
- EMD-WRF OD ERA5
- Merra 2 (raw)

Methods

- Temporal extrapolation with 4 MCP-methods
- Horizontal extrapolation with 2 methods (WAsP + WAsP-CFD)

					LTC - Mo	delled			Calculate	d with M49	Delta (N	ICP-WAsP)	
Mast	From	То	Regression	Matrix	Neural	Scaling	Mean	StdDev	WAsP	WAsP-CFD	WAsP	WAsP-CFD	
M49	2001.09.18	2006.09.18	8.38	8.44	8.40	8.43	8.41	0.02	8.26	8.25	1.9%	2.0%	
M50	2001.10.10	2001.12.05	7.63	7.77	7.55	7.79	7.69	0.10	7.61	7.59	1.0%	1.3%	
M51	2001.10.10	2001.11.24	7.90	7.93	7.93	7.98	7.94	0.03	7.78	7.67	2.0%	3.5%	
M52	2001.12.07	2002.02.09	7.77	7.80	7.60	7.84	7.75	0.09	7.70	7.66	0.7%	1.2%	
M53	2001.12.07	2002.02.10	7.91	8.03	7.87	8.02	7.96	0.07	7.99	7.95	-0.4%	0.1%	
M54	2002.02.10	2002.03.26	7.24	7.30	7.23	7.37	7.28	0.05	7.74	7.71	-5.9%	-5.5%	
M55	2002.02.12	2002.03.26	7.97	7.97	7.97	8.16	8.02	0.08	7.86	7.85	2.0%	2.1%	
										Minimum	-5.9%	-5.5%	
										Maximum	2.0%	3.5%	

Reference Series: MERRA2 (RAW)

Problem:

If a systematic bias/error occurs at a mast, then we will see a systematic under/over-prediction of the annual yields when doing a short windscanner/recast campaign and long-term correcting using traditional MCP-methods.

Goal:

To make a short study that evaluates the seasonal bias on several masts and using several long-term reference datasets - to see if it is a general issue.

Method:

Compare the *monthly wind speed index* from mesoscale data vs. longer mast measurement periods. 100% index period = dataset concurrent period (dataset itself is used for normalization to index 100).

- Use mast with multiple years.
- Use more mesoscale datasets.

Driven WRF with: ERA5, ERA-I, CFSR, MERRA2, **NEWA**.

Image credit: Anselm Grötzner, Cube-Ramboll, WindEurope-2018

3. Short Campaigns – A Real Challenge! Analysis of wind-speed seasonality by visual inspection of ~100 tall masts

Analysis of wind-speed seasonality by visual inspection of ~100 tall masts

			Distinct	Seasonal	Pattern	Season	al Predict	ion Bias
Country	# Masts	# Months	Yes	No	%	Yes	No	%
Azerbaijan	1	17	0	1	0%	1	0	100%
Brazil	12	10-36	8	2	80%	9	3	75%
Chile	1	20	1		100%			
China	1	19						
Croatia	1	11						
Denmark	1	28	1		100%	0	1	0%
Egypt	4	11-12	4		100%	0	4	0%
Finland	4	12-24	4		100%	1	3	25%
Germany	1	12	1		100%		1	0%
Ireland	2	11	4		100%	1	3	25%
Netherlands	1	12	1		100%		1	0%
Norway	1	20	1		100%	1		100%
Poland	7	12-31	4	2	67%	1	6	14%
South-Africa	12	13-32	10	1	91%	7	4	64%
Sweden	10	10-39	9		100%		9	0%
Turkey	19	11-24	6	9	40%	8	5	62%
Uruguay	20	13-50	4	16	20%	4	16	20%
TOTAL	98		58	31	65%	33	56	37%

Method

1. Establish index period (100%) equal to full period of mast-measurements

- 2. Calculate wind speed index for mast
- 3. Calculate wind speed index for mesoscale datasets based on CFSR, ERA5, ERA-Interim and MERRA2
- 4. Classify seasonality from graphs (based on mast data and concurrent data)
- 5. Visually classify seasonality bias from graphs

Analysis of wind-speed seasonality by visual inspection of ~10 tall masts

Id	Country	Seasonal Bias?
88_230	Denmark	? 7
90_233	Poland	Small?
397_733	Turkey	Yes
387_703	Turkey	Yes
87_212	Sweden	Small?
386_701	Turkey	Yes
255_505	Croatia	Yes
62_166	Finland	Small?
284_538	Germany	Small?
316_624	Ireland	Small?
119_289	Netherlands	Small?
100_001	Germany	○ ?

Analysis of wind-speed seasonality by visual inspection of ~10 tall masts

	Parameter	Dataset ->	ERA5-RAW	EMD-WRF OD (ERA5)	NEWA
7	Mean value		0.71	0.75	0.65
our	Coefficient of	variation	0.18	0.12	0.11
Ĭ	Minimum		0.49	0.58	0.54
	Maximum		0.88	0.88	0.76
	Parameter	Dataset ->	ERA5-RAW	EMD-WRF OD (ERA5)	NEWA
>	Mean		0.86	0.90	0.83
ail	Coefficient of variation		0.12	0.06	0.07
	Minimum		0.64	0.77	0.71
	Maximum		0.96	0.99	0.90
	Parameter	Dataset ->	ERA5-RAW	EMD-WRF OD (ERA5)	NEWA
γlr	Mean		0.83	0.88	0.86
ontl	Coefficient of variation		0.24	0.19	0.18
Ĕ	Minimum		0.34	0.53	0.45
	Maximum		0.99	0.99	0.99

Wind Speed Correlation (R2) at hourly, daily and monthly averaging time. Data from 11 masts. Notes: Green color-boldface shows best dataset for the metric being considered. NEWA data by curtesy of the NEWA project – Thanks to Jacob Mann and Bjarke Tobias Olsen, DTU Wind Energy.

Analysis of wind-speed seasonality by visual inspection of ~10 tall masts

		EN	EMD-WRF OD Meso Scale								
	ERA5	ERA5	MERRA2	ERA-I	CFSR	NEWA					
ean	0.83	0.88	0.90	0.87	0.86	0.86					
d.Dev	0.19	0.17	0.11	0.18	0.19	0.15					
inimum	0.34	0.53	0.69	0.50	0.46	0.45					
aximum	0.99	0.99	0.99	0.99	0.98	0.99					
	ean J.Dev nimum aximum	ERA5 ean 0.83 d.Dev 0.19 nimum 0.34 aximum 0.99	ERA5ERA5ean0.830.88d.Dev0.190.17nimum0.340.53aximum0.990.99	ERA5ERA5MERRA2ean0.830.880.90d.Dev0.190.170.11nimum0.340.530.69aximum0.990.990.99	ERA5ERA5MERRA2ERA-Iean0.830.880.900.87d.Dev0.190.170.110.18nimum0.340.530.690.50aximum0.990.990.990.99	ERA5ERA5MERRA2ERA-ICFSRean0.830.880.900.870.86d.Dev0.190.170.110.180.19nimum0.340.530.690.500.46aximum0.990.990.990.990.98					

Analysis of wind-speed seasonality by visual inspection of ~10 tall masts

Id	Country	Seasonal Bias?
88_230	Denmark	?
90_233	Poland	Small?
397_733	Turkey	Yes
387_703	Turkey	Yes
87_212	Sweden	Small?
386_701	Turkey	Yes
255_505	Croatia	Yes
62_166	Finland	Small?
284_538	Germany	Small?
316_624	Ireland	Small?
119_289	Netherlands	Small?
100_001	Germany	○ ?

3. Short Campaigns – A Real Challenge! (DK site with no seasonal bias)

3. Short Campaigns – A Real Challenge! (DK site with no seasonal bias)

3. Short Campaigns – A Real Challenge! (DK site with no seasonal bias)

3. Short Campaigns – A Real Challenge! (SE site with some seasonal bias)

1.3

3. Short Campaigns – A Real Challenge! (SE site with some seasonal bias)

6

Month of Year

8

1.0 WSIM: WSIM 0.9

0.8

0.7

12

10

-0.1 Delta V

-0.2

0.7

0.8

0.9

Delta WSIM: WSIM_{meso}

0.8

0.7

0

2

6

Month of Year

8

10

12

0.0

-0.1

-0.2

0

2

1.0

Wind Speed Index Monthly (WSIM)

1.1

1.2

1.3

3. Short Campaigns – A Real Challenge! (SE site with some seasonal bias)

3. Short Campaigns – A Real Challenge! (TK site with some seasonal bias)

1.1

1.2

1.3

3. Short Campaigns – A Real Challenge! (TK site with some seasonal bias)

1.3

3. Short Campaigns – A Real Challenge! (TK site with some seasonal bias)

Seasonal (Monthly) Variation of Wind Speed. Mast = Index. WRF-Data = Bias (Delta). 387_703 @ 82 m - 6.0 m/s - Turkey

Contents

- 1. Introduction to ERA5 and comparing to other reanalysis data
- 2. Correlations, trends and consistency
- 3. Short campaigns a real challenge!
- 4. Summary

Summary

- Long-term correction using very short measurement periods (months) is a challenge for MCP-methods and long term reference data
- Seasonality should be handled in the MCP-method equations as this is an issue at ${\sim}65\%$ of sites analyzed
- Seasonal bias is an issue at a significant number of sites (~40%) and should be addressed by a correction algorithm
- Work is progressing in the RECAST project
 - identify seasonality and seasonal bias from existing masts
 - correct for bias
 - quantify uncertaintes
 - understand how mesoscale datasets and reanalysis data impact the results

Thank you!

Latest (release) version at: http://help.emd.dk

Online Help

WindPRO Ouick Guides Minutro quick duncts Start using windPRO Multiple instances of windPRO Park with Scaler, Meso Data & Turbine prod. Park with Scaler, Meso Data & wind data Park with Scaler, Meso Data & wind data Edword Cole, Meso Data & wind data Stie Compliance Load Response Load Response Cleaning data with flagging in Meteo IEC6 A400-12-1 Angle and Terrain (Inck MCF) Mesoarc- Amerika – Predict) Ref Mesoarc- Amerika – Predict) Ref Mesoarc- Margine – Predict) Ref Mesoarc- Margine – Predict) Mesoarc- Mesoarc- Mesoarc- Mesoarc-Performing Regression Test of windPRO EMD-WRF ERA5 Webinar / Q&A / White Paper windPRO 3.0 (SP4): EMD-WRF MesoScale Data / windPROSPECTING: Webinar / Q&A windPRO 3.0: Introduction to 3.0: Webinar / Q&A ZVI / PHOTOMONTAGE news: Webinar / Q&A Mesoscale data in 3.0: Webinar / Q&A New Energy Calculation: Webinar / Q&A LOAD RESPONSE & SITE COMP.: Webinar / Q&A **Technical Notes** Covers calibration and validation of the models

Submit

Search keyword

Covers Calibration and Validation embedded in WindPRO. 1: Photomontage 2: Test of the PARK model 3: WASP10 and WindPRO 4: WASP-CFD Validation Rep 5: Park model revision

Studies, Reports and Papers

You can find a number of public reports, documents, studies and data on our company web site available from [here].

IMPORTANT NOTICES: These documents may be used only by users holding a valid registration key for the WindPRD software. Other use

available her

Manuals from Earlier Versions

Manuals in Other Languages = = = = = 11 11 =

WindPRO manuals in other languages are

Videos

windPRO 3.1:

windPRO 3.0:

windPRO 3.2: windPRO 3.2 Introduction Video

windPRO 3.1: What is new? Webinar / Q&A

windPRO 2.9: WASP-CFD in WindPRO: Webinar / Q&A SITE COMPLIANCE: Webinar / Q&A / Report PERFORMANCE CHECK: Webinar / Q&A NORD 2000: Webinar / Q&A WindPRO manuals from earlier versions are available here.