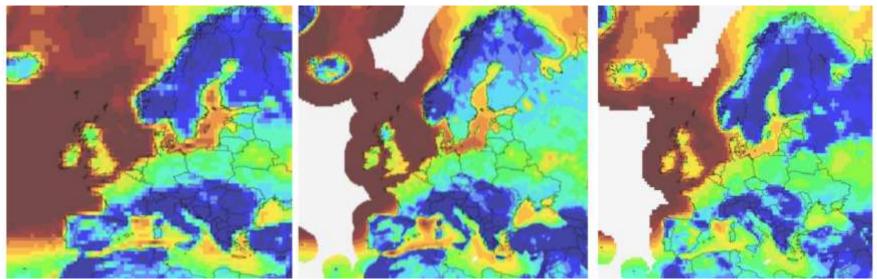


Site-assessment and icing impact using ERA5 assimilation data

WinterWind 2018 February 6th-7th

Morten Lybech Thøgersen (presenter) Lasse Svenningsen, Thorkild G. Sørensen & Daniel Lindholm

Eurostars Project windPROSPER



- 1. Brief introduction to ERA5
 - 2. Expectation and motivation for this study
 - 3.A Sensitivity to boundary data (ERA5, CFSR, ERA-I, MERRA2)
 - 3.B Sensitivity to model resolution and microphysics scheme
 - 3.C Comparison to sites
- 4. Findings / Conclusions

ERA-Interim

ERA5

MERRA-2

1. What is ERA5? - Overview

- ECMWF most recent reanalysis dataset (5th generation)
- Higher temporal and spatial resolution that ERA-Interim
- New parameters available such as 100m winds

Released so far

- 7 years have been released as first segment (2010-2016)
- Continious updating (December 2017)
- Full coverage 2017 (February 2018)

Still under development

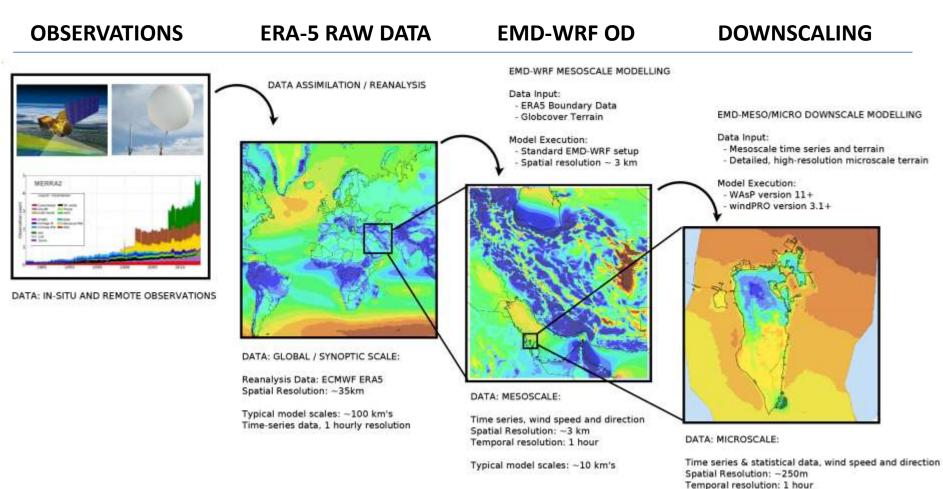
Item	Old Plan (Last Thursday)	New Plan (Last Friday)
ERA5T (short delay product)	2017-Q4	2018
Access to observations	2017-Q4	2018
Years 1979-2009 released	2018-Q2	Late 2018
Years 1950-1978 released	2019-Q1	2019

Public release plan @ http://climate.copernicus.eu/products/climate-reanalysis

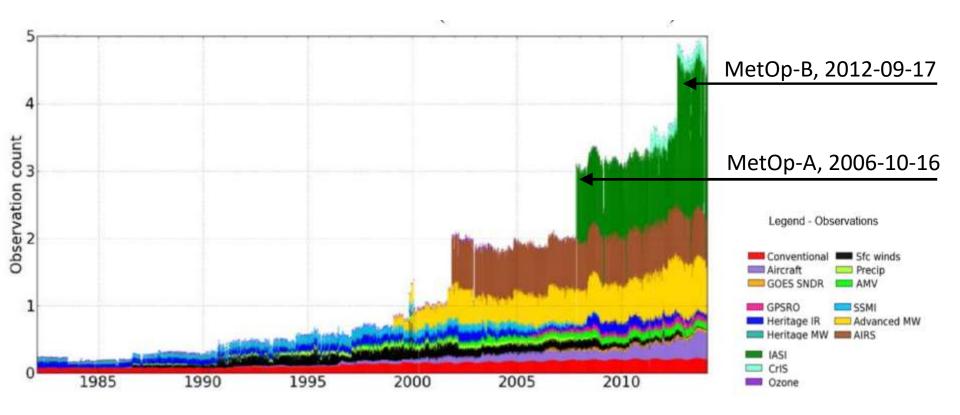
What is ERA5? – Comparison

Parameter \ Dataset	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2	
Vertical levels	137	60	72	64	
Horizontal resolution	~31 km	~80 km	~50 km	~38km/~25km	
Upper modelling level	0.01hPa (~80 km)	0.1hPa (~60 km)	0.01hPa (~80 km)	0.26 hPa (~55 km)	
Temporal resolution	1-hourly	6-hourly	1-hourly	1-hourly	
Release schedule	Monthly*	Monthly	Monthly	Daily	
Assimilation model	IFS Cycle 41r2	IFS Cycle 31r2	GEOS 5.12.4	Grid-Point Statistical Interpolation, GSI	
Spatial grid type	Reduced Gaussian	Reduced Gaussian	Cubed sphere	Varies	
Period available (now)	2010-2016	1979-present	1980-present	CFSR: 1979-2010 CFSv2: 2011-present	
Period available (at completion)	1950-present	1979-present	1980-present	CFSR: 1979-2010 CFSv2: 2011-present	
Delay in data delivery	3 months *)	3 months	1-2 months	1 day	

*) A preliminary version 'ERA5T' with 1 week delay will be available


1 .What is the performance? R^2 – Correlation –windspeed at 107 masts

	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
≥	Mean Value		0.67	0.64	0.61	0.61
Hourly	Standard Deviation	on	0.12	0.12	0.13	0.12
Ξ	Minimum		0.34	0.32	0.33	0.32
1.0	Maximum		0.88	0.84	0.83	0.83
	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
	Mean Value		0.86	0.83	0.81	0.81
Daily	Standard Deviation	on	0.08	0.09	0.10	0.09
	Minimum		0.51	0.49	0.45	0.45
	Maximum		0.96	0.95	0.95	0.95
	Parameter	Dataset ->	ERA5	ERA-Interim	MERRA2	CFSR / CFSv2
λl	Mean Value		0.89	0.87	0.86	0.84
Monthly	Standard Deviation	on	0.12	0.13	0.14	0.14
Σ	Minimum		0.25	0.27	0.24	0.28
	Maximum		0.99	0.99	0.99	0.99


1. Modelling Chain

Typical model scales: ~10 m's

1. Why also observations?

Credit:

Observations assimilated in the MERRA2 datasets for the period 01.1980 until 12.2014. Units are millions per 6 hours. From Bosilovich et al: 'MERRA-2: Initial Evaluation of the Climate - Technical Report Serieson Global Modeling and Data Assimilation – Volume 43'

1 Expectations before this study?

Could ERA5 in the modelling chain bring improved accuracy for icing (temperature, winds, clouds...) – as has been seen for winds?

Observations:

- Much better model resolution (spatial and temporal)
- Improved assimilation model
- More data-sources being assimilated in recent years

Method:

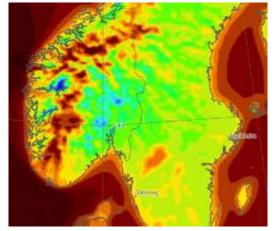
- Run different 'ensembles'
- Try to quantify any differences (possibly improvements) by looking at simple metrics such as icing-hours

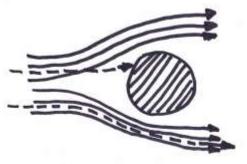
WRF Model Setup for This Study

WRF Model Setup

- Resolution (1): 3 km
- Resolution (2): 1.5 km
- Time Span: 1993-present (ERA5: 2010-2017)
- Land Use: Globcover (300m)

WRF Parameterization Schemes


- Microphysics (1): Ferrier
- Microphysics (2): Thompson
- Surface layer: Janjic
- Planetary boundary layer: Mellor-Yamada-Janjic
- Land-surface model: Noah
- Radiation: GFDL


Global Boundary Data

- ERA5 (1)
- ERA-Interim (2)
- MERRA2 (3)
- CFSR (4)

Icing Model

Makkonen / ISO 12494 In cloud icing on standard cylinder driven by (downscaled) WRF model parameters Pressure, temperature, cloud water, wind speeds. dm/dt > 10g/h

Current Study – In Three Steps

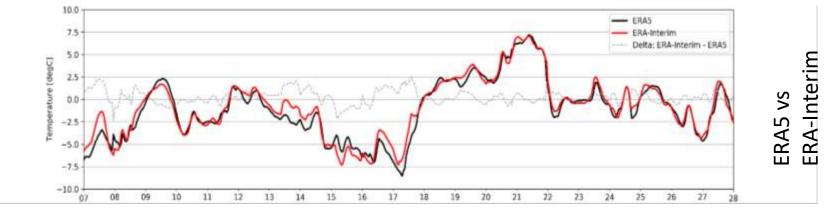
A. Sensitivity to boundary data

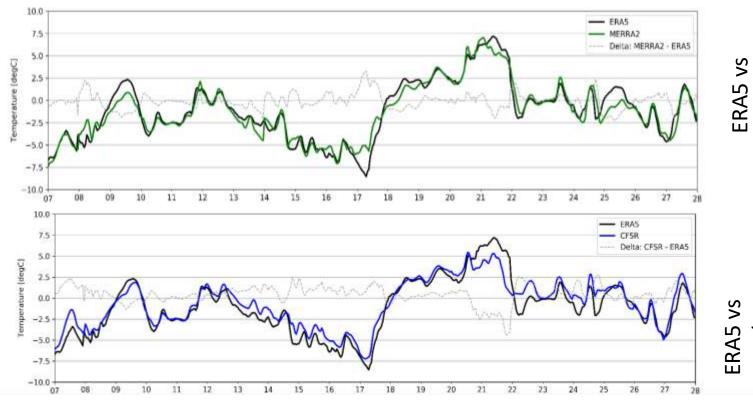
WRF-Setup: Microphysics Ferrier (1) and Thompson (2)

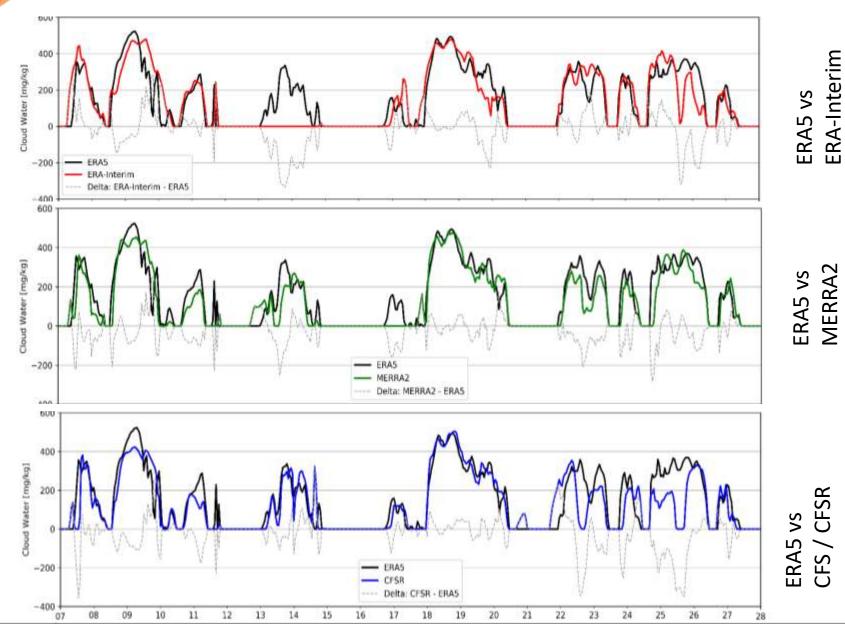
- 1 winter of modelling 2 sites (DK and SE)
- ERA5 (1)
- ERA-Interim (2)
- MERRA2 (3)
- CFSR (4)

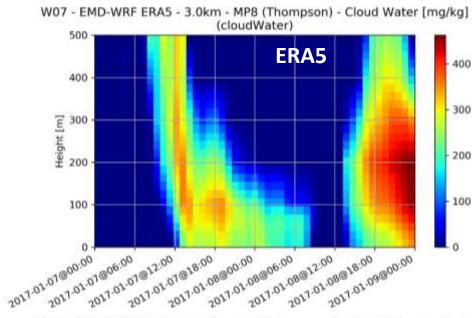
B. Sensitivity to model resolution

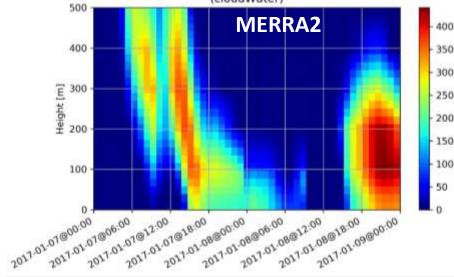
- Boundary data: ERA5 and ERA Interim
- Resolution: 3 km & 1.5 km

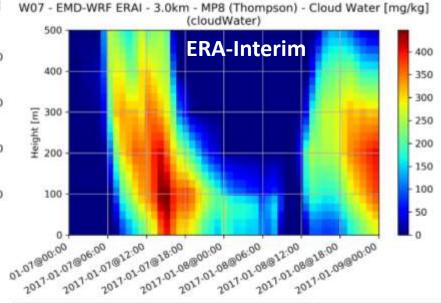

C. Comparison to local masts

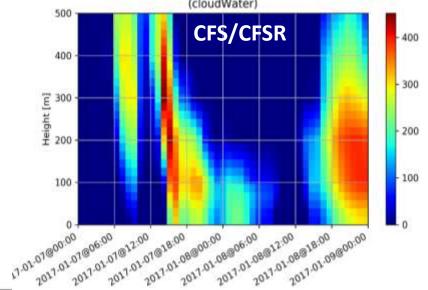

- Boundary data: ERA5 and ERA Interim
- Resolution 3 km
- 10 cases
- Microphysics: Thompson
- Period: Mast Period (typically ~1 year)


MERRA2


CFS / CFSR




QA: Sensitivity to Boundary Data



W07 - EMD-WRF MERRA2 - 3.0km - MP8 (Thompson) - Cloud Water [mg/kg] (cloudWater)

W07 - EMD-WRF CFSR - 3.0km - MP8 (Thompson) - Cloud Water [mg/kg] (cloudWater)

Site: W12 - Danish Site @ 100m Period: 2011.10-2012.03

			Active	Icing	Passive Icing			
Boundary Microphysics		Events [#]	lcing [h]	PowerRatio [%]	Events [#]	lcing [h]	PowerRatio [%]	
ERA 5	Thompson	7	21	0.06%	5	179	2.20%	
ERA Interim	Thompson	9	45	0.18%	7	196	1.96%	
MERRA 2	Thompson	27	104	0.73%	16	806	9.70%	
CFS / CFSR	Thompson	3	14	0.03%	3	128	1.44%	
Average		11.5	46	0.25%	8	327	3.82%	
Min		3	14	0.03%	3	128	1.44%	
N	27	104	0.73%	16	806	9.70%		

Notes:

PowerRatio = Yield for 2MW turbine for iced vs. all time-stamps

Site: W12 - Danish Site @ 100m Period: 2011.10-2012.03

		Active Icing						
Boundary	Microphysics	Events [#]	lcing [h]	PowerRatio [%]	Events [#]	lcing [h]	PowerRatio [%]	Avg. Temp [degC]
ERA 5	Thompson	7	21	0.06%	5	179	2.20%	4.7
ERA Interim	Thompson	9	45	0.18%	7	196	1.96%	4.6
MERRA 2	Thompson	27	104	0.73%	16	806	9.70%	3.7
CFS / CFSR	Thompson	3	14	0.03%	3	128	1.44%	5.0
Ave	erage	11.5	46	0.25%	8	327	3.82%	4.5
Min		3	14	0.03%	3	128	1.44%	3.7
N	/lax	27	104	0.73%	16	806	9.70%	5.0

Notes:

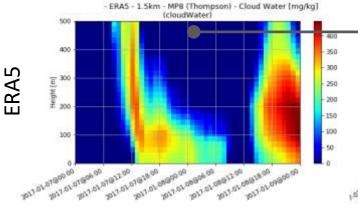
PowerRatio = Yield for 2MW turbine for iced vs. all time-stamps

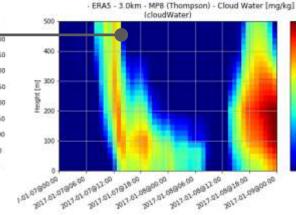
Site: W07 - Swedish Site @ 100m Period: 2016.06-2017.05

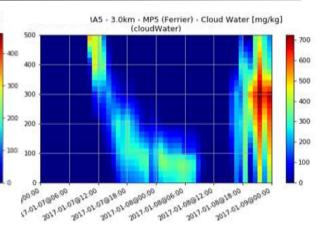
	Î	Active Icing						
Boundary	Microphysics	Events [#]	lcing [h]	PowerRatio [%]	Events [#]	lcing [h]	PowerRatio [%]	Avg. Temp [degC]
ERA 5	Thompson	56	434	3.1%	25	1256	12.3%	6.7
ERA Interim	Thompson	52	380	3.0%	26	1150	12.4%	6.7
MERRA 2	Thompson	54	377	2.9%	26	1336	14.1%	6.8
CFS / CFSR	Thompson	37	248	1.6%	16	907	8.3%	6.9
Ave	erage	50	360	2.7%	23	1162	11.8%	6.8
Min		37	248	1.6%	16	907	8.3%	6.7
N	1ax	56	434	3.1%	26	1336	14.1%	6.9

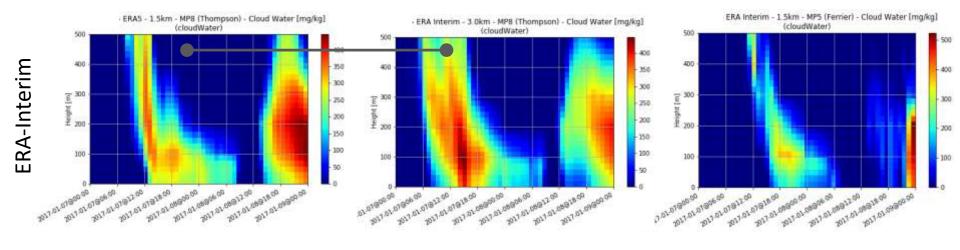
Notes:

PowerRatio = Yield for 2MW turbine for iced vs. all time-stamps


Mast: 7.7% instrumental ice = 670h


3B: Sensitivity to Resolution and Microphysics


1.5km - Thompson


3.0km - Thompson

1.5km - Ferrier

3B: Sensitivity to Resolution and Microphysics

Site: W07 - Swedish Site @ 100m Period: 2016.06-2017.05

			Active Icing						
Boundary	Resolution	Microphysics	Events [#]	lcing [h]	PowerRatio [%]	Events [#]	lcing [h]	PowerRatio [%]	Avg. Temp [degC]
ERA 5	1.5 km	Thompson	60	460	3.5%	25	1397	15.0%	6.6
ERA 5	3.0 km	Thompson	56	434	3.1%	25	1256	12.3%	6.7
ERA 5	3.0 km	Ferrier	42	251	1.3%	20	1041	10.3%	6.7
ERA-Interim	1.5 km	Ferrier	37	202	1.3%	22	1077	11.7%	6.7
ERA-Interim	3.0 km	Ferrier	43	210	1.2%	20	1043	10.7%	6.7
ERA-Interim	3.0 km	Thompson	53	380	3.0%	27	1150	12.4%	6.7

Notes:

PowerRatio = Yield for 2MW turbine for iced vs. all time-stamps

Mast: 7.7% instrumental ice = 670h

3C: Evaluation on Local Sites

Instrumental Icing vs Meteorological Icing on Swedish Sites

			Active Icing		Avg. Tempera	iture
MastID	Period	Mast Instr. Ice. [%]	ERA 5 [%]	ERA-Interim [%]	ERA 5 [degC]	ERA-Interim [degC]
Ma01	2011-2012	5.6%	3.1%	4.7%	5.87	5.72
Ma02	2010-2011	0.6%	5.9%	7.7%	5.90	5.85
Ma03	2010-2011	4.0%	2.0%	5.1%	5.88	5.50
Ma04	2010-2011	7.4%	4.5%	5.6%	5.59	5.62
Ma05	2011-2012	3.0%	0.6%	2.0%	7.69	7.66
Ma06	2012-2013	10.0%	3.0%	7.5%	5.31	5.14
Ma07	2011-2012	5.0%	3.4%	5.7%	7.09	6.77
Ma08	2012-2013	11.0%	5.3%	8.1%	4.82	4.72
Ma09	2010-2011	5.5%	2.4%	3.8%	5.59	5.44
Ma10	2016-2017	7.7%	5.0%	4.3%	6.72	6.74
				Average	6.05	5.92

ERA5 = WRF with ERA5 and Thompson microphysics, 3km resolution ERA-Interim = WRF with ERA-Interim and Thompson microphysics, 3km resolution

4. Findings / Conclusions!

General Conclusion on ERA5:

- ERA5 as input to WRF or on its own- is a significant improvement
 over previous reanalysis datasets (at least when looking on winds
- ERA-Interim is still the preferred choice for long-term wind and icing
 until a longer period of ERA5 data become available (Late 2018)

This Icing Study:

- Comparison directly against instrumental icing is very uncertain
 no clear trend is (yet) identified
- In average, ERA5 data results in less hours of active icing than ERA-I
 in our case in 9 out of 10 sites
- Local temperature bias correction is needed
- Cloud microphysics scheme seem more important than reanalysis source
- More recent (higher) quality validation data and analysis are needed
 before any firm conclusion can be drawn of ERA5 data and icing

Thank you!

